InAs Quantum Dots in Symmetric InGaAs/GaAs Quantum Wells

نویسنده

  • Tetyana V. Torchynska
چکیده

The self-assembled InAs quantum dots (QDs) are the subject of substantial interest during last fifteen years due to both fundamental scientific and application reasons. In these systems, the strong localization of an electronic wave function leads to an atomic-like electronic density of states and permits to realize the novel and improved photonic and electronic devices. Microlectronic and optoelectronic devices based on quantum wells (QWs) with InAs QDs have been the subject of investigation for the applications in semiconductor lasers for the optical fiber communication [1-3], infrared photo-detectors [46], electronic memory devices [7,8], as well as single electron devices and single photon light sources on the base of single-QD structures for the quantum information applications [9-12]. QDs are especially attractive for the applications in semiconductor lasers. For laser or photodiode applications the surface density of QDs has to be high, but for single-QD devices the QD density has to be low. As a result, there is an extensive effort to manipulate and control the position, size, shape and density of QDs [13-19].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast carrier dynamics in an InAs/InGaAs quantum dots-in-a-well heterostructure.

Ultrafast differential transmission spectroscopy is used to explore temperature-dependent carrier dynamics in an InAs/InGaAs quantum dots-in-a-well heterostructure. Electron-hole pairs are optically injected into the three dimensional GaAs barriers, after which we monitor carrier relaxation into the two dimensional InGaAs quantum wells and the zero dimensional InAs quantum dots by tuning the pr...

متن کامل

Coupled strained-layer InGaAs quantum-well improvement of an InAs quantum dot AlGaAs–GaAs–InGaAs–InAs heterostructure laser

Data are presented showing that, besides the improvement in carrier collection, it is advantageous to locate strain-matching auxiliary InGaAs layers @quantum wells ~QWs!# within tunneling distance of a single-quantum-dot ~QD! layer of an AlGaAs–GaAs–InGaAs–InAs QD heterostructure laser to realize also smaller size QDs of greater density and uniformity. The QD density is changed from 2310/cm for...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Energy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes

In this paper, we have studied the strain, band-edge, and energy levels of cubic InGaAs quantum dots (QDs) surrounded by GaAs. It is shown that overall strain value is larger in InGaAs-GaAs interfaces, as well as in smaller QDs. Also, it is proved that conduction and valence band-edges and electron-hole levels are size dependent; larger QD sizes appeared to result in the lower recombination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012